ON COMPUTING MINIMAL REALIZATIONS OF PERIODIC DESCRIPTOR SYSTEMS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On computing minimal realizations of periodic descriptor systems

We propose computationally efficient and numerically reliable algorithms to compute minimal realizations of periodic descriptor systems. The main computational tool employed for the structural analysis of periodic descriptor systems (i.e., reachability and observability) is the orthogonal reduction of periodic matrix pairs to Kronecker-like forms. Specializations of a general reduction algorith...

متن کامل

Computation of Minimal Realizations of Periodic Systems

We propose balancing related numerically reliable methods to compute minimal realizations of linear periodic systems with time-varying dimensions. The first method belongs to the family of square-root methods with guaranteed enhanced computational accuracy and can be used to compute balanced minimal order realizations. An alternative balancing-free square-root method has the advantage of a pote...

متن کامل

Computing the zeros of periodic descriptor systems

In this paper, we give a numerically reliable algorithm to compute the zeros of a periodic descriptor system. The algorithm is a variant of the staircase algorithm applied to the system pencil of an equivalent lifted time-invariant state-space system and extracts a low-order pencil which contains the zeros (both 6nite and in6nite) as well as the Kronecker structure of the periodic descriptor sy...

متن کامل

Reliable algorithms for computing minimal dynamic covers for descriptor systems

Minimal dimension dynamic covers play an important role in solving the structural synthesis problems of minimum order functional observers or fault detectors, or in computing minimal order inverses or minimal degree solutions of rational equations. We propose numerically reliable algorithms to compute two basic types of minimal dimension dynamic covers for a linear system. The proposed approach...

متن کامل

Determining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form

A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 2007

ISSN: 1474-6670

DOI: 10.3182/20070829-3-ru-4912.00030